Image based modelling of composites and lightweight materials

Dr Lee Margetts
University of Manchester
lee.margetts@manchester.ac.uk
Overview

• What is image-based modelling?
 – Tomographic imaging

• Why the need?
 – Microstructurally-faithful models

• Where is it used?
 – Metallic/carbon foams
 – Long-fibre composites

• How is it done?
 – Size of models

• Summary
• Acknowledgements
What is image based modelling?

Source: Vendel Szeremi
What is X-ray tomography?

- Transmitted intensity from a series of line projections of a cross section of the object at different angular orientations reconstructed to give **3-D map of x-ray absorption**
- Advantages
 - Non-intrusive
 - Good spatial resolution (currently $\approx 1\mu m$ in lab; $\approx 0.1\mu m$ at synchrotron sources)
 - Very sensitive to composition and density
 - Independent of specimen geometry
Tomography setup

Sample in Perspex Tube

X-Ray Source

Detector Camera
Tomography setup

- X-Ray Source
- Sample
- Detector Camera
Why the need?

- Complex architectures
 - Reinforcement distributions
 - Cell walls
- Fabrication defects
 - Flaws, cracks, porosity
- No need for idealisation of structure or defect
- Model actual test specimen
- Model “intractable” problems

Carbon-carbon composite.
2.5 x 2.5 x 2.5 mm FE model
Mises stress plot
Where has it been used?

• Energy materials
 – Graphite mechanical and physical behaviour (VHTR)
 – C/C and SiC/SiC

• Light materials
 – Metallic and polymeric composites
 – Cellular solids
 – Damage tolerance

• Biomaterials
 – Mechanical behaviour of bone
 – Characterisation of porous scaffolds
Metallic foams
Compression test

Graph showing compression test results with percentage values along the x-axis and corresponding images representing different stages of compression. The graph includes marks indicating 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 78.3%, and 78.3% on the x-axis.
What information can it provide?

- Characterise microstructure (without sectioning)
 - Distribution of phases
 - Mineral content
 - Size, shape and volume fraction of solid
 - Size, shape and volume fraction of voids
- Deformation mechanisms *in situ*
- Density measurement (without weighing)
 - Quantitative
 - Local: pixel-by-pixel or density map
- Mesh for FE analysis
 - “true” representation of structure
How is it done? - Workflow

Scan data

FE model

Image processing

Meshing
How is it done? – Scanning

• Medical scanners
 – CT – Computerised tomography
 – MRI – Magnetic resonance imaging
 – US – Ultra-sound

• Industrial scanners
 – Industrial CT scanners
 – MicroCT
 – NanoCT

• Any other modality that generates values arranged on a regular 3D grid
How is it done? – Image processing

- Import industrial CT, MicroCT, X-ray tomography (XMT) files
- Visualisation of complex data set
- Segmentation
- Low distortion, multipart surface mesh
How is it done? – Meshing

• Multi-part meshing
 – Robust automated mesh generation for topologies of arbitrary complexity (such as foams) and with any number of constituent materials/phases

• Image-based accuracy
 – Geometric accuracy of mesh domains is only dependent on image accuracy

• Material properties
 – Assigned within a given structure based on signal strength
How is it done? – FE analysis

- Direct export to ABAQUS
 - Nodes, Elements, Contact surfaces
 - Material properties
How is it done? – FE Analysis

- Direct export to ABAQUS
- Nodes, Elements, Contact surfaces
- Material properties
Is size important?

• How large a volume do you need to model?
• What resolution mesh do you need?
• As resolution of XMT systems improves, data sets and mesh sizes expand
• Development of visualisation methodologies
• Development of serial mesh generation
 – Any size mesh (so far up to 320 GB data set)
• Development of parallelised FE code
 – ParaFEM
 – Ultrascalable
Example – Eagle owl claw
Large meshes

- Abaqus, on a typical PC (2GB memory), can handle up to ~300K degrees of freedom.
- 3D microstructurally faithful models can have up to ~300M degrees of freedom. Can need parallel processing!
Mare Nostrum, Barcelona Supercomputer Center
Large Meshes

- Abaqus, on a typical PC (2GB memory), can handle up to ~300K degrees of freedom.
- 3D microstructurally faithful models can have up to ~300M degrees of freedom.
- Can need parallel processing!
Example: Velociraptor claw
Example: Velociraptor claw
Example: Velociraptor claw
Multicore processing on workstations

- Dell workstation, 2 x quad core, 64GB RAM < 5,000€
Summary and conclusions

- Non-destructive, 3-D means of characterising structure
 - Development of analytical models
- Generate FE predictions based on structure and local mechanical/thermal properties
 - Good agreement with experiment
 - Not possible to go via the “CAD” path
- Develop code to consider large models
- Key role of architecture
Collaboration opportunities

• “Collaborating for Success”
 – Funding for exchange/placement on tomography
• HECToR Capability Challenge
 – £1.7M cpu time on HECToR
 – Address problems using image-based approach
• Tomographic suite
 – £2.3M to buy 4 new scanners
 – From high resolution (~100nm) to large object (~1m)
 – *In situ* thermomechanical testing
 – Supporting work on reconstruction, visualisation, region-of-interest tomography
Acknowledgements

• Colleagues:

• Financial support from
 – British Energy plc, BNFL, Magnox Electric/British Nuclear Group
 – UK Health and Safety Executive (Nuclear Installations Inspectorate)
 – EU (Extemat IP)
 – NDA (Nuclear Decommissioning Authority)
 – EPSRC

• The opinions expressed are those of the author, and not necessarily those of the research sponsors.
Image based modelling of composites and lightweight materials

Dr Lee Margetts
University of Manchester
lee.margetts@manchester.ac.uk